top of page

Student & Teacher Space

Public·127 students

Digital Design And Computer Architecture



The class provides a first introduction to the design of digital circuits and computer architecture. It covers technical foundations of how a computing platform is designed from the bottom up. It introduces various execution paradigms, hardware description languages, and principles in digital design and computer architecture. The focus is on fundamental techniques employed in the design of modern microprocessors and their hardware/software interface.




Digital Design and Computer Architecture



Sarah loves teaching, exploring and developing new technologies, traveling, wind surfing, rock climbing, and playing the guitar. Her recent exploits include researching sketching interfaces for digital circuit design, acting as a science correspondent for a National Public Radio affiliate, and learning how to kite surf. She speaks four languages and looks forward to learning more in the near future.Affiliations and ExpertiseAssistant Professor of Engineering, Harvey Mudd College, Claremont, CA, USARatings and ReviewsWrite a review


Digital Design and Computer Architecture: ARM Edition covers the fundamentals of digital logic design and reinforces logic concepts through the design of an ARM microprocessor. Combining an engaging and humorous writing style with an updated and hands-on approach to digital design, this book takes the reader from the fundamentals of digital logic to the actual design of an ARM processor. By the end of this book, readers will be able to build their own microprocessor and will have a top-to-bottom understanding of how it works.


Beginning with digital logic gates and progressing to the design of combinational and sequential circuits, this book uses these fundamental building blocks as the basis for designing an ARM processor. SystemVerilog and VHDL are integrated throughout the text in examples illustrating the methods and techniques for CAD-based circuit design. The companion website includes a chapter on I/O systems with practical examples that show how to use the Raspberry Pi computer to communicate with peripheral devices such as LCDs, Bluetooth radios, and motors.


This book will be a valuable resource for students taking a course that combines digital logic and computer architecture or students taking a two-quarter sequence in digital logic and computer organization/architecture.


David Harris is the Harvey S. Mudd Professor of Engineering Design at Harvey Mudd College. He received his Ph.D. in electrical engineering from Stanford University and his M.Eng. in electrical engineering and computer science from MIT. Before attending Stanford, he worked at Intel as a logic and circuit designer on the Itanium and Pentium II processors. Since then, he has consulted at Sun Microsystems, Hewlett-Packard, Broadcom, and other design companies. David holds more than a dozen patents and is the author of three other textbooks on chip design, as well as many Southern California hiking guidebooks. When he is not working, he enjoys hiking, flying, and making things with his three sons.


Sarah L. Harris is an Assistant Professor of Engineering at Harvey Mudd College. She received her Ph.D. and M.S. in Electrical Engineering from Stanford University. Before attending Stanford, she received a B.S. in Electrical and Computer Engineering from Brigham Young University. Sarah has also worked with Hewlett-Packard, the San Diego Supercomputer Center, Nvidia, and Microsoft Research in Beijing. Sarah loves teaching, exploring and developing new technologies, traveling, wind surfing, rock climbing, and playing the guitar. Her recent exploits include researching sketching interfaces for digital circuit design, acting as a science correspondent for a National Public Radio affiliate, and learning how to kite surf. She speaks four languages and looks forward to learning more in the near future.


Digital Design and Computer Architecture, Second Edition, takes a unique and modern approach to digital design, introducing the reader to the fundamentals of digital logic and then showing step by step how to build a MIPS microprocessor in both Verilog and VHDL. This new edition combines an engaging and humorous writing style with an updated and hands-on approach to digital design. It presents new content on I/O systems in the context of general purpose processors found in a PC as well as microcontrollers found almost everywhere.


Beginning with digital logic gates and progressing to the design of combinational and sequential circuits, the book uses these fundamental building blocks as the basis for the design of an actual MIPS processor. It provides practical examples of how to interface with peripherals using RS232, SPI, motor control, interrupts, wireless, and analog-to-digital conversion. SystemVerilog and VHDL are integrated throughout the text in examples illustrating the methods and techniques for CAD-based circuit design. There are also additional exercises and new examples of parallel and advanced architectures, practical I/O applications, embedded systems, and heterogeneous computing, plus a new appendix on C programming to strengthen the connection between programming and processor architecture.


"Harris and Harris have taken the popular pedagogy from Computer Organization and Design down to the next level of refinement, showing in detail how to build a MIPS microprocessor in both Verilog and VHDL. Given the exciting opportunity that students have to run large digital designs on modern FGPAs, the approach the authors take in this book is both informative and enlightening." --David A. Patterson, University of California at Berkeley, Co-author of Computer Organization and Design


"Developed at Harvey Mudd College, this undergraduate textbook introduces combinatorial logic and sequential logic circuit design, describes the computer's microarchitecture that connects hardware with software, and explains how to build a MIPS microprocessor." --Reference and Research Book News, February 2013


Translated into other languages Digital Design and Computer Architecture takes a unique and modern approach to digital design. Beginning with digital logic gates and progressing to the design of combinational and sequential circuits, Harris and Harris use these fundamental building blocks as the basis for what follows: the design of an actual MIPS processor. SystemVerilog and VHDL are integrated throughout the text in examples illustrating the methods and techniques for CAD-based circuit design. By the end of this book, readers will be able to build their own microprocessor and will have a top-to-bottom understanding of how it works. Harris and Harris have combined an engaging and humorous writing style with an updated and hands-on approach to digital design.


This second edition has been updated with new content on I/O systems in the context of general purpose processors found in a PC as well as microcontrollers found almost everywhere. The new edition provides practical examples of how to interface with peripherals using RS232, SPI, motor control, interrupts, wireless, and analog-to-digital conversion. High-level descriptions of I/O interfaces found in PCs include USB, SDRAM, WiFi, PCI Express, and others. In addition to expanded and updated material throughout, SystemVerilog is now featured in the programming and code examples (replacing Verilog), alongside VHDL. This new edition also provides additional exercises and a new appendix on C programming to strengthen the connection between programming and processor architecture.


_OC_InitNavbar("child_node":["title":"My library","url":" =114584440181414684107\u0026source=gbs_lp_bookshelf_list","id":"my_library","collapsed":true,"title":"My History","url":"","id":"my_history","collapsed":true,"title":"Books on Google Play","url":" ","id":"ebookstore","collapsed":true],"highlighted_node_id":"");Digital Design and Computer ArchitectureDavid Money Harris, Sarah L. HarrisMorgan Kaufmann Publishers, 2007 - Computers - 569 pages 1 ReviewReviews aren't verified, but Google checks for and removes fake content when it's identifiedDigital Design and Computer Architecture is designed for courses that combine digital logic design with computer organization/architecture or that teach these subjects as a two-course sequence. Digital Design and Computer Architecture begins with a modern approach by rigorously covering the fundamentals of digital logic design and then introducing Hardware Description Languages (HDLs). Featuring examples of the two most widely-used HDLs, VHDL and Verilog, the first half of the text prepares the reader for what follows in the second: the design of a MIPS Processor. By the end of Digital Design and Computer Architecture, readers will be able to build their own microprocessor and will have a top-to-bottom understanding of how it works--even if they have no formal background in design or architecture beyond an introductory class. David Harris and Sarah Harris combine an engaging and humorous writing style with an updated and hands-on approach to digital design. Unique presentation of digital logic design from the perspective of computer architecture using a real instruction set, MIPS. Side-by-side examples of the two most prominent Hardware Design Languages--VHDL and Verilog--illustrate and compare the ways the each can be used in the design of digital systems. Worked examples conclude each section to enhance the reader's understanding and retention of the material. Companion Web site includes links to CAD tools for FPGA design from Xilinx, lecture slides, laboratory projects, and solutions to exercises. What people are saying - Write a reviewReviews aren't verified, but Google checks for and removes fake content when it's identifiedLibraryThing ReviewUser Review - Tobias.Bruell - LibraryThingThis book gives a throughout introduction to logic design (also in relation to hardware definition languages) and computer architecture. A bit of the physical foundations is also described, but on a ... Read full review 041b061a72


  • About

    Welcome to the group! You can connect with other members, ge...

    bottom of page